6大核心模块(Modules)
示例
Self Query 检索器(Self Query Retriever)

LangChain

SelfQueryRetriever

在教程中,我们将演示SelfQueryRetriever,正如其名,它具有查询自身的能力。具体而言,给定任何自然语言查询,检索器使用查询构造的LLM链来编写结构化查询,然后将该结构化查询应用于其底层VectorStore。这使得检索器不仅可以使用用户输入的查询与存储文档的内容进行语义相似性比较,还可以从用户查询中提取存储文档的元数据的过滤器并执行这些过滤器。

创建Pinecone索引#

首先,我们需要创建一个Pinecone VectorStore,并使用一些数据填充它。我们已经创建了一个包含电影摘要的小型演示文档集。

注意:自查询检索器需要您安装larkpip install lark

# !pip install lark
 
import os
 
import pinecone
 
pinecone.init(api_key=os.environ["PINECONE_API_KEY"], environment=os.environ["PINECONE_ENV"])
 
/Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/pinecone/index.py:4: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)
  from tqdm.autonotebook import tqdm
 
from langchain.schema import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Pinecone
 
embeddings = OpenAIEmbeddings()
# create new index
pinecone.create_index("langchain-self-retriever-demo", dimension=1536)
 
docs = [
    Document(page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose", metadata={"year": 1993, "rating": 7.7, "genre": ["action", "science fiction"]}),
    Document(page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...", metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2}),
    Document(page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea", metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6}),
    Document(page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them", metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3}),
    Document(page_content="Toys come alive and have a blast doing so", metadata={"year": 1995, "genre": "animated"}),
    Document(page_content="Three men walk into the Zone, three men walk out of the Zone", metadata={"year": 1979, "rating": 9.9, "director": "Andrei Tarkovsky", "genre": ["science fiction", "thriller"], "rating": 9.9})
]
vectorstore = Pinecone.from_documents(
    docs, embeddings, index_name="langchain-self-retriever-demo"
)
 

创建我们的自查询检索器#

Now we can instantiate our retriever. To do this we’ll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents.

from langchain.llms import OpenAI
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo
 
metadata_field_info=[
    AttributeInfo(
        name="genre",
        description="The genre of the movie", 
        type="string or list[string]", 
    ),
    AttributeInfo(
        name="year",
        description="The year the movie was released", 
        type="integer", 
    ),
    AttributeInfo(
        name="director",
        description="The name of the movie director", 
        type="string", 
    ),
    AttributeInfo(
        name="rating",
        description="A 1-10 rating for the movie",
        type="float"
    ),
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(llm, vectorstore, document_content_description, metadata_field_info, verbose=True)
 

尝试使用 Testing it out#

现在我们可以尝试使用我们的检索器了!

# This example only specifies a relevant query
retriever.get_relevant_documents("What are some movies about dinosaurs")
 
query='dinosaur' filter=None
 
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'genre': ['action', 'science fiction'], 'rating': 7.7, 'year': 1993.0}),
 Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'year': 1995.0}),
 Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'director': 'Satoshi Kon', 'rating': 8.6, 'year': 2006.0}),
 Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'director': 'Christopher Nolan', 'rating': 8.2, 'year': 2010.0})]
 
# This example only specifies a filter
retriever.get_relevant_documents("I want to watch a movie rated higher than 8.5")
 
query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)
 
[Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'director': 'Satoshi Kon', 'rating': 8.6, 'year': 2006.0}),
 Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'director': 'Andrei Tarkovsky', 'genre': ['science fiction', 'thriller'], 'rating': 9.9, 'year': 1979.0})]
 
# This example specifies a query and a filter
retriever.get_relevant_documents("Has Greta Gerwig directed any movies about women")
 
query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig')
 
[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'director': 'Greta Gerwig', 'rating': 8.3, 'year': 2019.0})]
 
# This example specifies a composite filter
retriever.get_relevant_documents("What's a highly rated (above 8.5) science fiction film?")
 
query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction'), Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)])
 
[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'director': 'Andrei Tarkovsky', 'genre': ['science fiction', 'thriller'], 'rating': 9.9, 'year': 1979.0})]
 
# This example specifies a query and composite filter
retriever.get_relevant_documents("What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated")
 
query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990.0), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005.0), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')])
 
[Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'year': 1995.0})]