RWKV-4#
本页面介绍如何在LangChain中使用RWKV-4
包装器。它分为两个部分:安装和设置,以及带有示例的使用。
安装和设置#
-
使用
pip install rwkv
安装Python包 -
使用
pip install tokenizer
安装分词器Python包 -
下载一个RWKV模型 (opens in a new tab)并将其放置在所需的目录中
用法#
RWKV#
要使用RWKV包装器,您需要提供预训练模型文件的路径和tokenizer的配置。
from langchain.llms import RWKV
# Test the model
```python
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Input:
{input}
# Response:
"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Response:
"""
model = RWKV(model="./models/RWKV-4-Raven-3B-v7-Eng-20230404-ctx4096.pth", strategy="cpu fp32", tokens_path="./rwkv/20B_tokenizer.json")
response = model(generate_prompt("Once upon a time, "))
```python
模型文件[#](#model-file "Permalink to this headline")
-------------------------------------------------
您可以在[RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main)存储库中找到模型文件下载链接。
### Rwkv-4 models -> 推荐VRAM[#](#rwkv-4-models-recommended-vram "Permalink to this headline")
``` python
RWKV VRAM
Model | 8bit | bf16/fp16 | fp32
14B | 16GB | 28GB | >50GB
7B | 8GB | 14GB | 28GB
3B | 2.8GB| 6GB | 12GB
1b5 | 1.3GB| 3GB | 6GB
```python
查看[rwkv pip](https://pypi.org/project/rwkv/)页面获取更多关于策略的信息,包括流处理和cuda支持。