6大核心模块(Modules)
示例(Examples)
LLM Requests

LangChain

LLMRequestsChain

使用请求库从URL获取HTML结果,然后使用LLM解析结果

from langchain.llms import OpenAI
from langchain.chains import LLMRequestsChain, LLMChain

定义使用的提示:

from langchain.prompts import PromptTemplate
 
template = """Between >>> and <<< are the raw search result text from google.
Extract the answer to the question '{query}' or say "not found" if the information is not contained.
Use the format
Extracted:<answer or "not found">
>>> {requests_result} <<<
Extracted:"""
 
PROMPT = PromptTemplate(
    input_variables=["query", "requests_result"],
    template=template,
)

实例化LLMRequestsChain:

chain = LLMRequestsChain(llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=PROMPT))

定义输入:

question = "What are the Three (3) biggest countries, and their respective sizes?"
inputs = {
    "query": question,
    "url": "https://www.google.com/search?q=" + question.replace(" ", "+")
}

运行LLMRequestsChain:

chain(inputs)

输出如下:

{'query': 'What are the Three (3) biggest countries, and their respective sizes?',
 'url': 'https://www.google.com/search?q=What+are+the+Three+(3)+biggest+countries,+and+their+respective+sizes?',
 'output': '俄罗斯(17,098,242平方公里),加拿大(9,984,670平方公里),美国(9,826,675平方公里)'}